Basis Learning as an Algorithmic Primitive

نویسندگان

  • Mikhail Belkin
  • Luis Rademacher
  • James R. Voss
چکیده

A number of important problems in theoretical computer science and machine learning can be interpreted as recovering a certain basis. These include certain tensor decompositions, Independent Component Analysis (ICA), spectral clustering and Gaussian mixture learning. Each of these problems reduces to an instance of our general model, which we call a “Basis Encoding Function” (BEF). We show that learning a basis within this model can then be provably and efficiently achieved using a first order iteration algorithm (gradient iteration). Our algorithm goes beyond tensor methods, providing a function-based generalization for a number of existing methods including the classical matrix power method, the tensor power iteration as well as cumulant-based FastICA. Our framework also unifies the unusual phenomenon observed in these domains that they can be solved using efficient non-convex optimization. Specifically, we describe a class of BEFs such that their local maxima on the unit sphere are in one-to-one correspondence with the basis elements. This description relies on a certain “hidden convexity” property of these functions. We provide a complete theoretical analysis of gradient iteration even when the BEF is perturbed. We show convergence and complexity bounds polynomial in dimension and other relevant parameters, such as perturbation size. Our perturbation results can be considered as a non-linear version of the classical Davis-Kahan theorem for perturbations of eigenvectors of symmetric matrices. In addition we show that our algorithm exhibits fast (superlinear) convergence and relate the speed of convergence to the properties of the BEF. Moreover, the gradient iteration algorithm can be easily and efficiently implemented in practice. Finally we apply our framework by providing the first provable algorithm for recovery in a general perturbed ICA model. ar X iv :1 41 1. 14 20 v3 [ cs .L G ] 3 N ov 2 01 5

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effective Learning to Rank Persian Web Content

Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...

متن کامل

Creating Algorithmic Symbols to Enhance Learning English Grammar

This paper introduces a set of English grammar symbols that the author has developed to enhance students’ understanding and consequently, application of the English grammar rules. A pretest-posttest control-group design was carried out in which the samples were students in two girls’ senior high schools (N=135, P ≤ 0.05) divided into two groups: the Treatment which received gramm...

متن کامل

Ab initio study & Density functional investigational of Adenine & Thymine; Comparison of primitive Gaussian and NBO calculation

We have performed quantum-chemical ab initio in various basis sets at the Hartree-Fock andB3LYP levels for Adenine and Thymine with the program GAUSSIAN98. The Dipole,Quadrupole, Octapole and Hexadecapole moments and primitive in nine basis sets for thesemolecules are presented. The most stabilized forms of these molecules are observed in 6-311++G** basis set. We have evaluated coefficient hybr...

متن کامل

Parallel Genetic Algorithm Using Algorithmic Skeleton

Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...

متن کامل

Learning recursive functions from approximations

This article investigates algorithmic learning, in the limit, of correct programs for recursive functions f from both input output examples of f and several interesting varieties of approximate additional (algorithmic) information about f. Specifically considered, as such approximate additional information about f, are Rose's frequency computations for f and several natural generalizations from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016